skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lange, Julien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. GPUs are progressively being integrated into modern society, playing a pivotal role in Artificial Intelligence and High-Performance Computing. Programmers need a deep understanding of the GPU programming model to avoid subtle data-races in their codes. Static verification that is sound and incomplete can guarantee data-race freedom, but the alarms it raises may be spurious and need to be validated. In this paper, we establish a True Positive Theorem for a static data-race detector for GPU programs, i.e., a result that identifies a class of programs for which our technique only raises true alarms. Our work builds on the formalism of memory access protocols, that models the concurrency operations of CUDA programs. The crux of our approach is an approximation analysis that can correctly identify true alarms, and pinpoint the conditions that make an alarm imprecise. Our approximation analysis detects when the reported locations are reachable (control independence, or CI), and when the reported locations are precise (data independence, or DI), as well identify inexact values in an alarm. In addition to a True Positive result for programs that are CI and DI, we establish the root causes of spurious alarms depending on whether CI or DI are present. We apply our theory to introduce FaialAA, the first sound and partially complete data-race detector. We evaluate FaialAA in three experiments. First, in a comparative study with the state-of-the-art tools, we show that FaialAA confirms more DRF programs than others while emitting 1.9× fewer potential alarms. Importantly, the approximation analysis of FaialAA detects 10 undocumented data-races. Second, in an experiment studying 6 commits of data-race fixes in open source projects OpenMM and Nvidia’s MegaTron, FaialAA confirmed the buggy and fixed versions of 5 commits, while others were only able to confirm 2. Third, we show that 59.5% of 2,770 programs are CI and DI, quantifying when the approximation analysis of FaialAA is complete. This paper is accompanied by the mechanized proofs of the theoretical results presented therein and a tool (FaialAA) implementing of our theory. 
    more » « less
  2. GPUs offer parallelism as a commodity, but they are difficult to program correctly. Static analyzers that guarantee data-race freedom (DRF) are essential to help programmers establish the correctness of their programs (kernels). However, existing approaches produce too many false alarms and struggle to handle larger programs. To address these limitations we formalize a novel compositional analysis for DRF, based on memory access protocols. These protocols are behavioral types that codify the way threads interact over shared memory. Our work includes fully mechanized proofs of our theoretical results, the first mechanized proofs in the field of DRF analysis for GPU kernels. Our theory is implemented in Faial, a tool that outperforms the state-of-the-art. Notably, it can correctly verify at least 1.42× more real-world kernels, and it exhibits a linear growth in 4 out of 5 experiments, while others grow exponentially in all 5 experiments. 
    more » « less